Tetrahedron Letters 41 (2000) 8499-8503 # Novel rearrangement of 4-aroyloxy-3-bromomethyl-2-isoxazolines to 3-aroyloxymethylisoxazoles and a mechanistic study ## Rae-Kyu Chang and Kyongtae Kim* School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742, South Korea Received 19 July 2000; revised 4 September 2000; accepted 8 September 2000 #### **Abstract** Treatment of 4-aroyloxy-3-bromomethyl- and 4-aroyloxy-3-aroyloxymethyl-2-isoxazolines with NaHCO₃ in DMF at 120°C gave 3-aroyloxymethylisoxazoles in moderate to good yields. A concerted mechanism is proposed to explain the formation of the rearrangement products. © 2000 Elsevier Science Ltd. All rights reserved. Keywords: isoxazolines; isoxazoles; deprotonation; labeling; rearrangements. 2-Isoxazolines are useful for the synthesis of various functionalized organic compounds. Their synthetic methods including 1,3-dipolar cycloaddition involving nitrile oxides and alkenes have been extensively studied.¹ A survey of the recent literature shows some interesting methods for the synthesis of 2-isoxazolines which include nitrosative cyclization of 3-chloro-1-nitropropane using sodium nitrite and *n*-propyl nitrite in DMSO,² the reactions of 3-isoxazolin-5-one with olefins,³ photochemical reactions of 1,2-disubstituted cyclopropanes with NOBF₄,⁴ deprotonation of 2-isoxazolines by a strong base, followed by addition of alkyl iodides.⁵ More recently we reported synthesis of 3-substituted 4-aroyloxy-2-isoxazolines **2** by treatment of allylic arenecarboxylates **1** with NOBF₄ in CH₃CN at -23° C⁶ (Scheme 1). Of them, $$XC_6H_4C(=O)OCH_2CH=CHY$$ NOBF₄ $CH_3CN , -23 °C$ NOBF₄ $XC_6H_4C(O=)O$ N 2 Scheme 1. **a**. Y = H; **b**. $Y = CH_2Br$; **c**. $Y = XC_6H_4C(=O)OCH_2$ 0040-4039/00/\$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved. PII: \$0040-4039(00)01538-0 ^{*} Corresponding author. compound **2b** attracted our attention since it was expected that replacement of the bromine atom with appropriate nucleophiles would give various 3-substituted 4-aroyloxy-2-isoxazolines. In the course of our study on the nucleophilic displacement of the bromine atom of 2b, we found that treatment of 2b (X=H) with NaHCO₃ in DMF at 120°C afforded 3-benzoyloxymethylisoxazole 3a (X=H) in 53% yield (Scheme 2). Similarly the reaction of compound 2c (X=H) under the same conditions afforded 3a (48%). The results led us to investigate the reactions with other 2-isoxazoline derivatives 2b and 2c. Scheme 2. Reagents and conditions: (i) NaHCO₃, DMF, 120°C Typical procedure: to a solution of **2b** in DMF (10 mL) was added NaHCO₃ (5 equiv.). The mixture was heated at 120°C for an appropriate time, followed by addition of water (30 mL), which was extracted with CH_2Cl_2 (30 mL×2). The extracts were worked up as usual and the residue was chromatographed on a silica gel (70 ~ 230 mesh, ASTM) column. Elution with a mixture of n-hexane and EtOAc (5:1) gave 3. Reaction times, yields and mps of 3-aroyloxymethylisoxazoles 3 are summarized in Table 1. | Compd | X | Т | Γime (days) | | Mp (°C) | | |-------|------------|-------------------------|-----------------------|--------------|-----------------------|----------------------| | | | $\overline{Y = CH_2Br}$ | $Y = XC_6H_4CO_2CH_2$ | $Y = CH_2Br$ | $Y = XC_6H_4CO_2CH_2$ | | | 3a | Н | 1.5 | 2 | 53 | 48 | Liquid | | 3b | 4-MeO | 1 | 1.5 | 72 | 65 | $73 - 74^{b}$ | | 3c | 4-Me | 1.5 | 1 | 65 | 54 | Liquid | | 3d | 2-Br | 2 | 1.5 | 43 | 42 | Liquid | | 3e | 4-C1 | 1.5 | 2 | 56 | 52 | Liquid | | 3f | 2-Ph | 2 | 2 | 70 | 53 | Liquid | | 3g | $4-O_2N$ | 3° | 0.5 | d | | • | | 3h | 1-Naphthyl | 1 | 1.5 | 77 | 58 | 102-104 ^t | | 3i | 4-NC | | 1 | e | 13 | Liquid | Table 1 Reaction times, yields, and mps of isoxazoles 3 For mechanistic information on the conversion of either compounds **2b** or **2c** into **3**, 2-isoxazoline **4**, which possessed two different aryloxy groups, was subjected to the same reaction conditions. From the reaction only **3b** (63%) was isolated. No 4-cyanobenzolyoxy incorporated product was detected (Scheme 3). ^a Isolated yields. ^b Recrystallized from *n*-hexane. c Hours. ^d 4-Nitrobenzoic acid was isolated in 85% yield. ^e Compound **2b** (X=4-CN) was not prepared. Compounds **3** were characterized satisfactorily by the spectroscopic (IR, ¹H and ¹³C NMR, MS) and analytical data. The reaction of 2b (X=H) in the presence of *p*-anisic acid (2 equiv.) under the same conditions afforded only 3a (44%). Similarly only 3b (62%) was obtained from the reaction of 2b (X=4-MeO) in the presence of benzoic acid under the same conditions. No 4-anisic acid and benzoic acid derived products were detected from the former and the latter reactions, respectively. The results suggest that the aroyloxy group at C-4 of 2-isoxazolines migrates to the methylene carbon atom at C-3, presumably by a concerted mechanism. The reaction of **2b** did not proceed in the absence of NaHCO₃, whereas substitution of NaHCO₃ for organic bases such as pyridine and N,N-dimethylaniline under the same conditions led to decreased yields of **3b** in 27 and 28%, respectively, indicating the efficiency of NaHCO₃ compared with the organic bases for the formation of **3**. Unexpectedly treatment of **2b** (X = H, 4-MeO) with AgNO₃ in DMF at rt afforded formates **5a** and **5b** in 29 and 83% yields, respectively (Scheme 4). Since DMF was envisaged to be involved as a source of formyl group, DMF was substituted for EtOH as a solvent. Scheme 4. Reagents and conditions: (i) AgNO₃, DMF, rt, 12 h. (ii) AgNO₃, EtOH, rt, 12 h The bromine atom of **2b** (X=4-MeO) was then replaced by an ethoxy group, leading to compound **6** in 55% yield. No rearranged product such as **3b** was detected. The results suggest that generation of an electron deficient center at the migration terminus by the interaction of the bromine atom of **2b** with Ag^+ ion does not act as a driving force for the migration of the aryloxy group at C-4 in the molecules. In order to confirm the migrating oxygen atom, the ¹⁸O-enriched compound **2b*** prepared (Scheme 5) was subjected to the same conditions mentioned foregoing to trace where the ¹⁸O is. The enrichment of ^{18}O in the labeling compounds compared with the normal (unlabeling) compounds was compared by mass spectroscopy. By introducing % (M⁺+2) obtained from the abundances of M⁺ and M⁺+2 ions into the following equation,⁷ one can calculate α values that represent the contribution of % ^{18}O in % (M⁺+2) in ^{18}O -enriched molecular ion and its fragmented ions. $$4-\text{MeOC}_{6}\text{H}_{4}\text{C}(=\text{O}^{18})\text{OH} \xrightarrow{\text{i, ii}} 4-\text{MeOC}_{6}\text{H}_{4}\text{C}(=\text{O}^{18})\text{O}^{18}\text{H} \xrightarrow{\text{i, iii}} 4-\text{MeOC}_{6}\text{H}_{4}\text{C}(=\text{O}^{18})\text{OCH}_{2}\text{CH}=\text{CHCH}_{3}$$ $$7$$ $$4-\text{MeOC}_{6}\text{H}_{4}\text{C}(=\text{O})\text{O}^{18} \xrightarrow{\text{CH}_{2}\text{Br}} \xrightarrow{\text{vi}}$$ $$8$$ $$2\text{b*}$$ $$C\text{H}_{2}\text{OC}(=\text{O}^{18})\text{C}_{6}\text{H}_{4}\text{OMe-4}$$ Scheme 5. *Reagents and conditions*: (i) SOCl₂, reflux, 4 h. (ii) H₂O¹⁸ (10 mol%). (iii) Crotyl alcohol, 5 h. (iv) NBS, CCl₄, reflux, 12 h. (v) NOBF₄, CH₃CN, -23°C. (vi) NaHCO₃, DMF, 120°C % $$(\mathbf{M}^++2) = [(1.1 \times a)^2 + (0.016 \times b)^2]/200 + 0.2 \times c + \alpha$$ a: number of C atoms in the molecule; b: number of H atoms in the molecule c: number of O atoms in the molecule; α : contribution of ¹⁸O to % (M⁺+2) × in the molecule % (M⁺+2) and α values calculated based on the abundances of M⁺, M⁺+2 ions of labeled and normal compounds 7, a fragment (MeOC₆H₄C(=O)OCH₂CH=CHCH₂)⁺ from the molecule **8**, a fragment (MeOC₆H₄C(=O)OH)^{+•} from the molecule **2b*** and a fragment (MeOC₆H₄C(\equiv O⁺)) from the molecule **3b*** are summarized in Table 2. | Ions | 7+• | | (8 -Br) ^{+•} | | $(MeOC_6H_4C(=O)O^{18}H)^{+\bullet a}$ | | $MeOC_6H_4C(\equiv O^{18+})^b$ | | | | | |--|---------|--------|-------------------------------|--------|--|--------|--------------------------------|--------|--|--|--| | | Labeled | Normal | Labeled | Normal | Labeled | Normal | Labeled | Normal | | | | | $^{-}$ $^{/}$ $^{/}$ $^{/}$ $^{/}$ $^{/}$ $^{+}$ $^{+}$ $^{-}$ | 3.69 | 1.33 | 6.65 | 1.60 | 3.58 | 1.05 | 2.21 | 0.76 | | | | | α | 2.42 | 1.44 | 2.33 | 1.47 | 2.78 | 0.99 | 1.62 | 0.79 | | | | Table 2 Percent $(M^+ + 2)$ and α -values In order to avoid the interference of 91 Br in the calculations of % (M+2) of compounds 8 and 2b*, the α values ions were calculated based on the abundances of fragments (MeOC₆H₄C(=O)OCH₂CH=CHCH₂)⁺ and (MeOC₆H₄C(=O)OH)⁺ derived from the molecular ions of 8 and 2b*, respectively. The data clearly show that fragments from labeled compound possess a higher 18 O than the corresponding fragments from normal molecule. Indeed, the α value (1.62) obtained from labeled p-methoxybenzoyl cation generated from 3b* is higher than that (0.79) obtained from the corresponding unlabeled ion. This result clearly indicates that the 18 O atom in the molecule 2b* becomes the carbonyl oxygen of 3b*. Based on the data in hand, the rearrangement can be explained by deprotonation from C-5 of 2-isoxazolines, concomitant with migration of electrons to form a C=C double bond, followed by an intramolecular nucleophilic attack of the carbonyl oxygen to the carbon atom bearing a leaving group (Z=Br, ArC(=O)O) to give 3 (Scheme 6). ^a A fragment ion from 2b*. ^b A fragment ion from 3b*. Scheme 6. ## Acknowledgements The authors are grateful to the S.N.U., Daewoo Research Fund for financial support. ### References - 1. (a) Lang Jr., S. A.; Lin, Y.-i. In *Comprehensive Heterocyclic Chemistry*; Katritzky, A. R.; Rees, C. W., Eds.; Pergamon: Oxford, 1984; pp. 1–130. (b) Sutharchanadevi, M.; Murugan, R. In *Comprehensive Heterocyclic Chemistry* II, Katritzky, A. R.; Rees, C. W.; Scriven, E. F. V., Eds.; Elsevier Science Ltd.: Oxford, 1996; Vol. 3, pp. 221–260. - (a) Wade, P. A.; Price, D. T. Tetrahedron Lett. 1989, 30, 1185–1188. (b) Wade, P. A.; D'Ambrosio, S. G.; Price, D. T. J. Org. Chem. 1995, 60, 6302–6308. - 3. Higashida, S.; Nakashima, H.; Tohda, Y.; Tani, K.; Nishiwaki, N.; Ariga, M. Heterocycles 1992, 34, 1511-1514. - 4. Mizuno, K.; Ichinose, N.; Tamai, T.; Otsuju, Y. J. Org. Chem. 1992, 57, 4669-4675. - 5. Davis, F. A.; Kumar, A.; Reddy, R. E.; Chen, B.-C.; Wade, P. A.; Shah, S. W. J. Org. Chem. 1993, 58, 7591–7593. - 6. Chang, R. K.; Kim, K. Tetrahedron Lett. 1999, 40, 6773-6776. - 7. Silverstein, R. M.; Bassler, G. B.; Morrill, T. C. *Spectrometric Identification of Organic Compounds*, 3rd. ed.; John Wiley and Sons: New York, 1963; Chapter 2, pp. 5–72.